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We consider a solid body with a simply-connected cavity containing a liquid. 

In the case when the potential energy is positive definite with respect to a part 

of the generalized coordinates, we give sufficient conditions for the asymptotic 
stability of the equilibrium position relative to a part of the coordinates, to the 
generalized velocities, and to the kinetic energy of the fluid. It is shown that 
the asymptotic stability is uniform with respect to initial excitations from any 

compact set in some neighborhood of the equilibrium position. 

1. We consider a system of differential equations of perturbed motion 

x’ = x (t, It) (X (t, 0) EE 0) (1.1) 

where x = (yr, . . ., y,, 21, . * . 7 zp) is a real n-vector and, n = m + p! 

m > 0, p $3 U. We assume that 
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a) in the region 

t>o. nYn<H>o0, o<Ilzn<+~ (1.2) 

the right-hand sides of system (1.1) are continuous and satisfy the conditions for the 

uniqueness of the solution; 
b) the solutions of system (1.1) are z-continuable, i.e. esch solution x (t) is defined 

for all t > 0 for which (1 Y (t> 1 < H. 
The solution of system (1. l), determined by the initial condition X (to; t,,, X0) = X0! 

is denoted X = X (1; t,,. X0). llere we adopt the notation of the survey paper [l J. 

Theorem 1. If a function V (t, x) exists, satisfying in region (1.2) the condi- 

tions : 

1) V (6 XI > a (II Y Ii), h w ere a (r) is a continuous function. monotonically 

increasing on (0, 1.1 , a (0) fl 0: 
2) V’ (1, x) < - w (t, X) and w !t, X) > b (II Y 0) (b (r) is a function 

of the type of a (r)); 

3) for any t0 > 0 we can find 6 (t,) 5 0 such that for each point x,with 
1 X0 1 < 6’ there exists a constant M (to, X0) > 0 which bounds w’along every solu- 

tion starting in some neighborhood of the point x = 0, i.e. 

( W’ (t, x (t; to, x0)) 1 GM for t > t0 (1.3) 

then the motion X = 0 is asymptotically y-stable. 

Proof. The motion x = 0 is y-stable by virtue of conditions (1) and (2) p], there- 
fore, for any E > 0, 1, > 0 there exists 6 (e, to), 0 < 6 < 8, such that from 11 SO !I < 6 
follows II y (1; to, x0) 11 < .s for all t > to. Let us show that lim W (t, x (t; to, x,,)) = 0 

as t - 00 if only II x0 (1 < 6. We assume the contrary: let there exist a number 1 > 0, 

a point x, with 11 x* !I < 6 , and a sequence tk -. a: (k = 1, 2, 3, . ..). fk - L,..~ > a > 
0, for which 

1v V,), x($7 to, x.)) > 1 (1.4) 
On the basis of (1.3) and (1.4), from the relation t 

w (f, x (f; fo, x,)) = w Ifk, x (fki for x,)) $ c , W’ (T, x (T; fn, x,)) dz 

‘I( 

we conclude that thereexists p, 0 < p < cz / 2, for which W (t, x (t; to, x1)) > 1 I 2 

for I E ltk - fJ, fk + PI for all k = 1, 2, 3, . . . . Consequently (see condition 2 of the 
theorem), 

V’ (r, x (T; to. x*)) g - U-2 for t E [tk - p, fk + PI, k = 1, 2,3, . . . 

Further, we have Jir+P 
0 < C’ (fk ? P, x (fk + 9; fo, x*)) = 1. (fo, x*) + c V’ (r, x (z; to, x*)) dr < 

yo 
k $+I- 

< LJ (fo* x+) + 2 1 V’ (c x (r; fn, x,)) dr < v (lo, x*) - Ipc 
i=1 ti-,9 

which is impossible if k is sufficiently large. The theorem is proved. 

Theorem 2. If a function v (t, X) exists, satisfying conditious (1) and (2) of 
Theorem 1, and w’ < 0, then the motion x = 0 is asymptotically y-stable. If. 

furthermore. system (1.1) and function W are o-periodic in 1 (or do not depend on time), 
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then the asymptotic y-stability is uniform in (t,, x@>_ 

Proof. From the theorem’s hypotheses it follows that 

FI’ (t, x (L; to, x())) 4 tl as t - v t1.5) 

Otherwise, W (I, x (1; t,, x,)) $S I > o for t & 1,. But then I” (I, x (1; z,, xO)) +_ _._I 
for r .& lot and from relation 

which is impossible if 2 is sufficiently large. From (1.5) we conclude that motion 
x = 0 is asymptotically y-stable. When system (1.1) and function W are w-periodic 
in t, the required uniformi~ follows from Theorem 1 of 131. 

Note . The theorems proved generalize. respectively, Theorems 3 and 4 of [S]. 

2, The motion of a holonomic mechanical system with generalized coordinates 
q,. . . . , q,t and time-independent constraints, which is under the action of potential, 

gyroscopic, and dissipative forces, is described by a system of Lagrange equations 

Taking the total energy /I ti I’ -(- I; of the system as the Liapunov function, we 
obtain CZ] U’ ‘- 2f (2.2) 

Example 1 in [3] admits of the following generalization, Assume that: 

1) system (2.1) admits of a particular solution q .-= q’ -= 0 (the equilibrium 
position) ; 

2) the potential energy 1’ Cj (q,, . . .q,!) is positive definite in Q,, . . . , 

(I”* (VL < fi), while the dissipative funcfion _j :. f (ql’. . . . , (IsL’) is a quadratic 

form positive definite relative to all tile velocities, and by virtue of (&a), the equilib- 

rium position is stable with respect to (ii. . . , . ym, (I~‘, . . . , q,“ 1’23; 
3) from some mechanical considerations it is known that each solution of system 

(2. I), located in some neighb~~rbood of the point q -. rt’ 0, is bounded (*) ; 

4) there are no equilibrium positions in the set t,! (fj) > 0 . 
By repeating the arguments in Example 1 of 133, with the obvious replacement of the 

setqr’ . . . ‘101 2 -2 in by the set L’ (;I) > 0, we convince ourselves that 

If (6i (t), :I’ (tj) i 0 as 1 -- 00 if I! :t (0) i t- j ‘1’ (0) \j is suf~ciently small. 

by lheorem 1 in [3J, from this it follows that the equ?ibrium position (1 .- cf’ ..z 0 
js asymptotically stable relative to or, . . . , q,n, QI’, . . . , q,,’ uniformly in {to, q, , 

ij "'I. In such a form this example can be extended to the stability problem for the 

equilibrium position of a solid body with a liquid filling. 

*) This condition can be taken as fulfilled, and all the subsequent conclusions remain 
in force, for example, if the coordinates qmtlr . . . . qn are angular (mod 2x! and all the 

quantities occurring in system (2.1) and the function N are 2~ -periodic in9m+rl ..., 9n 

131. 
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3. Let us now consider a solid body having a simply-connected cavity which is par- 
tially or wholly filled with a homogeneous incompressible viscous (or ideal) liquid. We 
assume that the constraints imposed are independent of time and that potential forces 

as well as external dissipative forces with complete dissipation act on the system; we 
neglect the surface tension force. We take the equations of motion in the form [4] 

d a?’ a?’ _---= @, a/ -- 
lit cigj* u’lj 

I 
d9j’ 

(j=l,...,n<h) (3.1) 

dv -- 
dt 

ox v=F-+dp+vAv, div v = 0 

To these equations we should add on the appropriate boundary and initial conditions; 

here f (ql’, . . . , q,,‘) is a positive-definite quadratic form, v > 0 for a viscous 

liquid and V L u for an ideal liquid. 

By virtue of the assumption that the forces acting are potential, we have [4] 

j,l 5 

where u is the relative velocity vector. Taking the system’s total energy H = T f U 
as the Liapunov function, we obtain [41 

HI’ = - 2f - 1 Edt (3.2) 
: 

here [4] 

and .~,x~J:~ is a moving coordinate system rigidly fixed to the body. By eij -= 11, 
(al;, i dXj -1- dVj i hi) we denote the components of the deformation rate tensor. 

Further, as in [5]. we make certain assumptions on the nature of the perturbed motion. 

Following [5] we make a continuous change of variables 

1” = h (51, Q, %)1 2: == v ( .r,, J? x3) -7 * T = U’ (sl. 52, 53) 

and we let the equation of the side wall be v (x,. x2, x3) I= PO 7: ConSt, while we 

represent the equation of the liquid’s free surface in the form r - (z,, = x (t, h, v), 

a0 =I const. We consider that by specifying the values 

(I,,, ttO’Y r-ii (ts, 5r9 J?* Its) :- Vi (srY 52v xJ (i = 1, 2, 3) 

X (t,, I.. v) 

at the initial instant t = tO and specifying div u - 0, the subsequent motion of the 
system is uniquely determined. 

We assume that (Cf. Sect. 2) : 
1) the equations of motion (3.1) admit a particular solution (I = q’ -= 0, 

v = 0 (the equilibrium position); 
0) the potential energy U is positive definite in ql, . . . , q,,, (m ( n); and 

by virtue of (3.2), the equilibrium position is stable relative to qr, . . ., Qmr Ql’, . * -9 
q,,‘, T2 (T2 is the liquid’s kinetic energy); 

3) the coordinates q,,,+l, . . ., qn are cyclic (mod 2n), and all the quantities 
occurring in system (3.1) and the function H are &-periodic in qmcl,. . ., qn; nere 
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we can take it [3] that q,,,+r (t), . . ., qn (t) are bounded in the perturbed motion ; 
4) there are no equilibrium positions in the set IJ > () . 

Suppose that in the perturbed motion the deviation P satisfies the condition 143 

V > ~1 for every t > t, > 0 . We accept the following assumptions. Assurnptron- 
A) Along every perturbed motion the liquid’s relative velocity vector u and its 

total time derivative u’ remain uniformly bounded throughout the liquid during the 

entire motion, 
IIuII<M, jIu’Il<:M. M=const>O 

In such a case the derivative f’ relative to the first group of Eqs. (3. l), solved with 
respectto qj”(j=l,..., n) , is bounded along any perturbed motion. Hence, taking 
(3.2) into account, we conclude on the basis of Theorem 1 that the equilibrium position 

is asymptotically stable relative to qr’, . . ., q,,’ (*) . This conclusion is valid both for 
a viscous as well as for an ideal liquid. From now on we assume that the liquid isviscous. 

Together with Assumption A we accept the following Assumptions B, C and D. 

B) Along any perturbed motion the components of the deformation rate tensor and 
their total time derivatives and partial derivatives with respect to coordinates x,, as 

well as the partial derivatives dui / 6’~~ , remain uniformly bounded throughout the 
liquid during the entire motion, 

IeijI<M, Ie,j+I<M, 1 $+w, iq+!f (f,j,s=l,2,3) (3.3) 

C) [5] The function x (t, h, v) IS continuous in h, v uniformly in t > 0: i.e. for 
any E > 0 there exists 6 (E) > 0 suci~ that from 1 h’ - v ) < 8, 1 v’ - vu1 ( 6 
follows 1 x (1, h’, V’) - X (t, A”, V”)I < E for all t > 0. 

D) [51 The function H depends continuously on the initial conditions, i.e. for any 
E > 0, 8 > 0 there exists 6 (a, 0) > 0 such that from 

II Qo’ - %” II < 4 I co” - (Ions II < 6, I ‘pi’ (x,, 52,x9) - ‘pi” (q, X2$ x9) I< 8 
I x’ (0, A, q - XI (0, h, v) ) < 6 

follows 

I H (9’ (% q” (e), u’ (0,x1,5*. cc& x’ (e$ h. v)) - 

H (9” (e), q”’ (e), Un (0, 51, ~2, ~2) XI (0, A, V)) I< E 

By virtue of (3.3). E’ and 

-$\Edt 
z 

are bounded in the perturbed motion. Therefore, in the perturbed motion eij -+ 0 as 

t --t 00 throughout the liquid (this is proved with the use of (3.2) in just the same way 
as Theorem 1). Furthermore, as was established, q’ (1) -+ 0 as t + 00. Consequently, 
the kinetic energy T + 0 as t --t 00. 

Let us show that H -t 0 as t --t 00. Assume the contrary ; then H - H* > 0 and 

H>H’ for t > to (3.4) 

for any sequence of r, + 00 the sequence of functions {x (rS, h, v)} is uniformly bounded 

and equicontinuous (see C), therefore, by virtue of the Arzela theorem, from it we can 

l ) The system being considered has an infinite number of degrees of freedom. However, 
the proof of Theorem 1 in this case is completely preserved. 
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single out a convergent subsequence. Thus, for some sequence of tk - co , 

q (t,) - q,, q’ (t&) - 0, u ($, Zl, X2, zs) -to, X (‘r, x, v) - 2% (5% v) 

We note that 
H lq=q,,q+o,u+,,x=x, = *’ 

consequently, 0’ (q*, x*) = H* > 0. Taking the iimit “point” (q+, q*’ = 0, n = 

0, x*) as the origin of a new perturbed motion (q* (t), q*’ (t), u* (tl q, zp, zs), xs (t, 
3c, v)), we obtain by virtue of Assumption4 that for some B > O* 

H (q* (% q”(@, U* (@v ZI, 12. ~a), X* (8, h, v)) < H* 

Using the continuous dependency (Condition D) and the group property of autonomous 

systems, just as in Example 1 of 133. we obtain that in the original perturbed motion, 

H (q (tk f 9), q ‘(ts i_ 8)‘ U (th. -!- 8, 51, ~2~ f8) x &. + 8, A+ 6) < H* 

for all k greater than some N, which contradicts inequality (3.4). 
Thus, in the perturbed motion, if + 0, g’ -+ 0, qi --t 0 (i = 1, . . ., m), U + 0, 

as t-too. Let a > 0 be such tnat trom 

I/roII<o, IIc,‘II<o, I(Pi(%%%)l<o (i=1,2,3) 

(3.5) 
~x(O,b+-XC(h.Y)~~a 

where z - ~a = X0 (A, V) is the equation of the free surface in the unperturbed mo- 
tion, follows Ei+ 0 as t 300. Among the functions Cpi and 3~ (0, h, v) satisfying 

condition (3.5) we select a class K of equicontinuous ones (by virtue of (3.5) these 

functions are uniformly bounded). Let us show that the relation H -+ 0 as t -+ 00 

is fulfilled uniformly with respect to initial perturbations from the “domain” 

l(qo(l<u., Il%*IIer @wqEK P=1,2,,7) (3.6) 

i.e. for any E > 0 there exists 8 (E) > 0 such that if at t = 0 the initial pertur- 

bations lie in domain (3.6). then 11 < E for all t > 0. 

Indeed. for any point no = (so, qo’, ql, 92, ‘pa, X) from domain (3.6) there exists 
tf (e, ~2) > U such that 

(3.7) 

Here P (t. p,) denotes the solution (q (t), q’ (t), u (t), x (I, h, Y)) issuing from the point 

Pr at 1 = u . By continuity (Condition D) there exists a neighborhood 0 &) of point 
pisuch that for any point p,’ E 0 (~2) 

x (P (6, Fr’)) < a (3.8) 

H decreases monotonically along the motion, therefore, from (3.8) it follows that 

H (n (t, IL;)) < s for t Z 0, PO’ E 0 04 (3.9) 

Uniformly bounded and equicontinuous functions occur in class K , therefore, domain 

(3.6) is compact and. consequently, from the system (0 (uO)) of neigh~rho~s covering 
it we can single out a finite subcover O,, . . . . 0,. Let the numbers 0,, . . . . 13~ correspond 
to this subcover. We set 9 (a) = max ( el, ,. ., &l (6 fe) depends only on E). From(3.9) 
it follows that 

H (IL 0, po)) < e for t > 9 (a) 

if PO lies in domain (3.6). Q. E. D, 
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Consequently, the equilibrium position is asymptotically stable relative to q,, . . . . 
qm, q1’, . . .t qn 7 7’2 uniformly with respect to initial conditions from domain (3.6). 

Note . It is easy to show analogously [S] that in the case being considered here the 

dissipative forces possess partial dissipation or are entirely absent (/ ;G 0). while in 

the set H > 0 there are no motions of the whole system as a single solid body (see 

Zhukovskii’s theorem in 143 p. 67), then in the perturbed motion /I + (1 as 1 --- co 

and, what is more, uniformly in domain (3.6;). which is proved analogously to the above. 

Consequently, the conclusion on asymptotic stability relative to Q,. . . I/,,,. cl,‘. . . 

4’ T,, II 7 uniform with respect to initial condirlons from domain (3.6). rernains in force. 

From this,in the special case when the potential energy IT has a minimum at tile equl- 

librium position, there follows an addition to 1’lteare.m 1.1 of [Sj concerning uniformity 

with respect to initial conditions from domail (3. G). 

The author thanks V. V. Rumiantsev for guidance and constant attention. 
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An approximate method is proposed for synthesizing the optimal control for a 

dynamical system in the presence of external random perturbations and mea- 

surement errors. The synthesis problem posed reduces, as is known, to solving 

a nonlinear parabolic partial differential equation (the Bellman equation) 

whose exact solutions are known only in a few cases. It is assumed that either 
the external perturbations acting on the system are sufficiently small or tile 


